In my previous and first post about the electoral college, I tried to show how it is possible to get the necessary 270 votes to win the election in the college and do it winning the popular election in a minority of the states. Now we model the electoral college as a knapsack problem.
My approach was a bit simplistic (heuristic) and now I will show how to model the electoral college as an example of a very well-known problem in mathematical programming: the knapsack problem. In the knapsack problem, you want to fill the knapsack with a few items. Each item has a weight and some value to you, and you want to pack the knapsack with as much value as possible within the weight the knapsack (and your own back!) can hold.
